Directly Driven, Tamped Heavy Ion Fusion Targets Matthew Terry Lawrence Livermore National Laboratory 19th International Symposium on Heavy Ion Fusion Berkeley, CA August 13, 2012 The Heavy Ion Fusion Science Virtual National Laboratory LLNL-PRES-573832 ^{*} This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073. #### Outline Target Performance Ion beam requirements Unique target physics Bragg & Tamper Shocks Combined pusher and radiation drive Hydrodynamic Stability Conclusions and Further work #### Tamped targets evolved from simple direct drive targets - Beam kinetic energy increases in time to follow ablation front - Accelerator requirements for this target are very demanding - Low kinetic energy beams are difficult to focus - Total power required huge number of beam lines - Change in beam kinetic energy is large # Target design uses both exploding pusher and x-ray driven ablation to drive implosion - Fuel compression (t < breakout) driven by expanding CH pusher - Shell acceleration (t > breakout) driven by x-ray ablation of Si-doped plastic - Target has yield of 27 MJ @ 435 kJ driver energy | Material | Thickness
(µm) | Density
(g/cm³) | |------------|-------------------|--------------------| | Rhodium | 20 | 12.41 | | CH | 164 | 1.049 | | CH + 1% Si | 100 | 1.0735 | | DT Ice | 160 | 0.245 | | DT Gas | 700 | 3.e-4 | ### **Target Performance** - Hydra simulations show efficient coupling leading to high gain at low driver energy - Moderately low adiabat despite crude pulse shaping - Large convergence ratio - Hot-spot ignition physics is NIF-like | Aspect Ratio | 4.88 | |--------------------|----------| | Implosion Velocity | 360 km/s | | Adiabat | 1.65 | | ρR_{DT} | 1.8 | | CR | 35 | | Yield | 26 MJ | | Gain | 63 | | Burnup | 24% | | T _{rad} | 350 eV | | η _{hydro} | 4.7 % | # Ion pulse requirements are modest, but require novel pulse shape - 2 pedestals + linear ramp power profile - Constant kinetic energy - Slope of ramp controls the handoff from pusher drive to ablation drive | Pulse length | 21 ns | |-----------------------------------|-----------------| | Total energy | 435 kJ | | Peak power* | 150 TW | | Kinetic Energy | 4.6 GeV | | Ion Species | Pb ⁺ | | Spot Size
(Gaussian FWHM) | 1 mm | | Total Charge* | 97 μC | | Peak Current* | 33 kA | | Perveance limited number of beams | 11 | ^{*}Total for all beams ### Shell linear stability ### Early time Tamper-Pusher interface is stable # Interface goes RT-unstable, but tamper has weak hydrodynamic coupling at this point #### Ablator-Fuel interface is stable during shell acceleration # Pusher-Ablator interface weakly unstable, but under weak acceleration. # Shell remains RT unstable, but now experiences radiative stabilization ### Single-mode growth factors at ablator interface peak ~5200 #### Single-mode growth factors at ablator interface peak ~5200 ### Conclusions and potential future direction - Tamped targets show high gain at low beam energy - Beam parameters look attractive - Large growth factors put demanding tolerances on uniformity - Mitigated through greater offset between beam terminus & ablator? - High density (~2 g/cm³) pushers for better stability? - Single pusher/ablator material?